[Contribution from Department of Chemistry, Purdue University]

Hyperconjugation and Spectrum of the Benzenium Ion, Prototype of Aromatic Carbonium Ions ${ }^{1}$

By Norbert Muller, ${ }^{2 a}$ Lucy W. Pickett and Robert S. Mulliken ${ }^{2 b}$
Received April 10, 1954

We have used the semi-empirical LCAO MO method to calculate the energy levels and spectrum, charge distribution, bond orders, resonance energy and hyperconjugation energy (HCJE), of the $\mathrm{C}_{6} \mathrm{H}_{7}+$ ion, which we assume to have the structure Throughout our computations, we included overlap for neighboring atoms, but neglected non-ncighbor interactions. Our calculations indicate that the $\mathrm{C}_{6} \mathrm{H}_{7}{ }^{+}$ion should be colored, and that the contribution of hyperconjugation to the total net resonance energy is of the order of 0.6 e.y., larger than most non-aromatic conjugation energies. ${ }^{3}$ The results, surveyed in Sections 10-13, are probably fairly typical for aromatic (and aliphatic) carbonium ions and for the intermediates in aromatic substitution reactions.

It is shown that hyperconjugation in $\mathrm{C}_{6} \mathrm{H}_{7}{ }^{+}$creates relatively large π bond orders between the CH_{2} carbon atonn and the neighboring ring atoms, thus to a considerable extent restoring the otherwise lost aromatic character of the ring. The computed HCJE is already moderately large when electronegativity differences (between carbon atoms and the H_{2} of the CH_{2} group, and among carbon atoms which differ in charge, as they do in $\mathrm{C}_{6} \mathrm{H}_{7}{ }^{+}$) are neglected; it is greatly increased when proper self-consistent allowance is made for a redistribution of charge to conform to these electronegativity differences. The possible application of a similar procedure to explain the ionization potentials of other hydrocarbon ions is briefly discussecl. Relations of the charge distribution in $\mathrm{C}_{6} \mathrm{H}_{7}{ }^{+}$computed for the case that electronegativity difference effects are neglected, to considerations of Longuet-Higgins on the charge distribution in alternant hydrocarbon radicals and their cations, are discussed in Section 11. In Section 3 the choice of parameters for the theoretical treatment of hyperconjugation by the semi-empirical LCAO method is discussed, and a theoretical justification is given for the empirically established electropositive behavior of hydrogen quasi- π orbitals toward carbon π orbitals in hyperconjugation.

Introduction

1. General Discussion.-A number of authors ${ }^{4}$ have studied the equilibria in mixtures of aromatic hydrocarbons and strong acids, which may be written $\mathrm{Ar}+\mathrm{H}^{+} \rightleftarrows \mathrm{ArH}^{+}$. Kilpatrick and Luborsky, 4 b who investigated the reaction $\mathrm{Ar}+$ $\mathrm{HF} \rightleftarrows \mathrm{ArH}++\mathrm{F}^{-}$of the methylated benzenes, report that the equilibrium constant varies from 10^{-8} for $\mathrm{Ar}=$ benzene to 10^{-2} for hexamethylbenzene. These results support the belief ${ }^{5}$ that cations of the type ArS^{+}are formed as intermediates in electrophilic substitution reactions of aromatic hydrocarbons ($\mathrm{S}=$ substituent; in our case the extra H functions as S).

The simplest such ion is $\mathrm{C}_{6} \mathrm{H}_{7}^{+}$, which may be called the benzenium ion. ${ }^{6}$ The following calcula-
(1) The calculations were begun by Lucy W. Pickett at Chicago in summer, 1951. continued at Mount Holyoke, and carried further by Norbert Muller in 1953.
(2) (a) National Research Postdoctorate Fellow. Present address: Department of Chemistry, Purdue University, Lafayette, Indiana, (b) Fulbright Research Scholar. Permanent address: Department of Physics, University of Chicago, Chicago 37, Illinois.
(3) A preliminary account of this work has appeared in J. Chem Phys., 21, 1400 (1953)
(4) (a) W. Klatt, Z. anorg. Chem., 234, 189 (1937); D. A. McCaulay and A. P. Lien, This Joursal, 73, 2013 (1951); H. C. Brown and H. W. Pearsall, ibid., 74, 191 (1952). The spectra have been studied by V. Gold and F. L. Tye, J. Chem. Soc., 2172 (1952), and (see Section 10 below) by C. Reid. (b) M. Kilpatrick and F, E. Luborsky, This Journal, 75, 577 (1953). (c) H. C. Brown and W. J. Wallace, This Journal, 75, 6268 (1953).
(5) G. W. Wheland, ibid., 64, 900 (1942); M. J. S. Dewar, J. Chem Soc., 463 (1949); V. Gold, ibid., 2184 (1952); and related papers.
(6) D. J. Cram, This Journal, 74, 2129 (1952), has used the name phenonium ion for the species A. In a private communication he suggests that

A

elthylene-phenonium ion may be a better name for A ; then phenonium could be used as a generic name for ions containing the grouping B. On the other hand, E. Heilbronner and M. Simonetta, Helv. Chim.
tions, based on the semi-empirical LCAO MO (Linear Combination of Atomic Orbitals Molecular Orbital) method, give the energy levels, charge distribution, bond orders and resonance energy of this ion. We find that hyperconjugation, neglected in previous computations, ${ }^{5}$ makes an important contribution to the resonance energy. We further find that two electronic transitions should occur in or near the visible, so that solutions containing benzenium ion should appear colored; this is in agreement with observations reported in reference 2 above.

Figure 1 shows the configuration assumed for these calculations.

Fig. 1.
The six carbon atoms form a ring in a plane which also contains five of the hydrogen atoms, the other two hydrogens being symmetrically placed above and below it, so that the ion has $\mathrm{C}_{2 \mathrm{v}}$ symmetry. This is the geometrical model agreed on by most authors (cf. reference 3). Dewar ${ }^{7}$ has proposed a " π-complex" model in which the added proton is not bonded to any particular atom of the ring. He argues that otherwise "the ring would cease to be aromatic, and there would be a large decrease in resonance energy." The results of the present calculations seem to remove the force of such an argument.

With the model shown in Fig. 1, hyperconjugation should occur between the CH_{2} group and the remaining π electrons of the ring. The case is simi-
Acta, 35, 1049 (1952), in an article describing calculations similar to those of reference 3 for C and similar ions, use the name azuienium. We feel that it may be useful to give specific names to important particular aromatic carbonium ions, even though the generic name phenonium may be adopted for B and its derivatives,
(7) M. J. S. Dewar, "A Review of the π-Complex Theory," Paper presented at the Colloque International de Montpellier, 1951, and printed in Bull. soc. chim. France, [5] 18, C71 (1951).
lar to that of cyclopentadiene $\square \mathrm{CH}_{2}{ }^{8}$. The theoretical treatment of hyperconjugation ${ }^{8 b, 9}$ shows that it should occur not only with CH_{2} or CH_{3} groups, but also (though no doubt to a somewhat different quantitative extent) when one or more of the H atoms is replaced by any substituent group S. Hence the essential features of our computations on

should also be applicable to the ions
 and their derivatives, which are believed to exist as intermediates in electrophilic substitution reactions. (Ions of the type $\left.\square<]_{S}\right]^{+}$should likewise be subject to the same kind of treatment.)
2. Outline of the Computations.-We treat the $\mathrm{C}_{6} \mathrm{H}_{7}+$ ion as if it had six π-electrons, in orbitals made by combining the six $2 \mathrm{p} \pi \mathrm{c}$ AO's (atomic orbitals) and a quasi- π orbital ($1 \mathrm{~s}_{\mathrm{H}}-1 \mathrm{~s}_{\mathrm{H}}$) on the H_{2} quasi-atom. In the customary way, ${ }^{10}$ the energy levels and the ratios of the LCAO coefficients are obtained by solving seven linear equations and the corresponding secular equation after equating to zero the matrix elements representing interactions between non-neighbor atoms.

Because of the $\mathrm{C}_{2 v}$ symmetry, the orbitals may be divided into two groups, those of a_{2} symmetry, with coefficients $c_{3}=-c_{7}, c_{4}=-c_{6}, c_{1}=c_{2}=$ $c_{5}=0$, and those of b_{1} symmetry with $c_{3}=c_{7}$, $c_{4}=c_{6}$. If these conditions on the coefficients are substituted into the linear equations (this brings about a transformation to symmetry orbitals) it is found that the energies of the a_{2} orbitals are the roots of the secular equation
$D\left(\mathrm{a}_{2}\right)=\left|\begin{array}{cc}x_{3} & \beta_{34}+1 / 2 S_{34}\left(x_{8}+x_{4}\right) \\ \beta_{34}+1 / 2 S_{34}\left(x_{3}+x_{4}\right) & x_{4}\end{array}\right|=0$
while the energies of the b_{1} orbitals are the roots of $D\left(\mathrm{~b}_{1}\right)=0$, where
for all carbon-carbon overlap integrals, and taking the corresponding β 's as all equal. With the procedure used by Mulliken, et al., ${ }^{12}$ to find group overlap integrals, we computed the CH_{2} quasi- π overlap integral, $S_{\text {r2 }}$, for several assumed values of the H-$\mathrm{C}-\mathrm{H}$ angle and of the $\mathrm{C}-\mathrm{H}$ distance. Typical results were

$<\mathrm{H}-\mathrm{C}-\mathrm{H}$	RCH, \AA.	S_{12}
105°	1.09	0.491
120°	1.14	.512

As it happened, we made the first calculations using the second value, and then retained it for consistency; it is clear that a value near 0.5 is about right and that the exact value does not matter much. In accordance with the assumption of the approximate proportionality of β to S, β_{12} was taken to be twice $\beta_{\mathrm{cc}}{ }^{13}{ }^{13}$

Here it may be worthwhile to pause to emphasize the following points. (1) The much larger value of β for the quasi- π bond, which together with a quasi- σ bond forms the $\mathrm{C}=\mathrm{H}_{2}$ quasi-double bond, is directly related to the fact that the $\mathrm{C}=\mathrm{H}_{2}$ bond (corresponding as it does, if one uses localized bond orbitals, to two strong $\mathrm{C}-\mathrm{H} \sigma$ bonds) is much stronger than a $\mathrm{C}=\mathrm{C}$ double bond. (2) The difference between hyperconjugation and ordinary conjugation or resonance is dependent precisely on the larger value of β_{12} than of β_{cc}; if $\beta_{12} / \beta_{\mathrm{cc}}$ could be increased at will, hyperconjugation would progressively diminish in strength.
A single value of x, called x_{0}, was used for all the carbon atoms in the first approximate calculations, and the x value of the H_{2} quasi-atom was written as $x_{0}+\delta \beta_{\mathrm{CC}}$, so that a positive value of δ indicates greater electronegativity. ${ }^{14}$

In the first computations on the MO theory of hyperconjugation, Mulliken, Rieke and Brown ${ }^{8 b}$ set $\delta=0$ after preliminary work indicated that the results were not very sensitive to $\delta .{ }^{15}$ Later ${ }^{13 \mathrm{c}}$ Mulliken and Roothaan, in computations on hyperconjugation in twisted ethylene, reasoned that $\delta(\delta / \beta$ in their notation) must be positive, since the hydrogen atom 1 s electron is surely
$D\left(\mathrm{~b}_{1}\right)=\left|\begin{array}{ccccc}x_{1} & \beta_{12}+1 / 2 S_{12}\left(x_{1}+x_{2}\right) & 0 & 0 & 0 \\ \beta_{12}+1 / 2 S_{12}\left(x_{1}+x_{2}\right) & x_{2}\left(\beta_{23}+S_{33}\left(x_{2}+x_{3}\right)\right. & 0 & 0 \\ 0 & \beta_{23}+1 / 2 S_{23}\left(x_{2}+x_{3}\right) & x_{3} & \beta_{34}+1 / 2 S_{34}\left(x_{3}+x_{4}\right) & 0 \\ 0 & 0 & \beta_{34}+1 / 2 S_{34}\left(x_{3}+x_{4}\right) & x_{4} & \beta_{45}+1 / 2 S_{45}\left(x_{4}+x_{5}\right) \\ 0 & 0 & 0 & 2 \beta_{45}+S_{45}\left(x_{4}+x_{5}\right) & x_{5}\end{array}\right|$

In these determinants, $x_{i}=\alpha_{\mathrm{i}}-\epsilon(\epsilon=$ orbital energy), with the electronegativity parameters $\alpha_{\mathrm{i}}=\int \psi_{\mathrm{i}} H \psi_{\mathrm{i}} \mathrm{d} \tau ;$ the resonance integrals $\beta_{\mathrm{ij}}=$ $\gamma_{\mathrm{ij}}-1 / 2 S_{\mathrm{ij}}\left(\alpha_{\mathrm{i}}+\alpha_{\mathrm{j}}\right)$, where $\gamma_{\mathrm{ij}}=\int \psi_{\mathrm{i}} H \psi_{\mathrm{j}} \mathrm{d} \tau^{11}$; and S_{ij} is the overlap integral $\int \psi_{\mathrm{i}} \psi_{\mathrm{j}} \mathrm{d} \tau$.
3. The Choice of Semi-empirical Parameters.We began by using the Slater-AO value $S_{\mathrm{CC}}=0.25$
(8) (a) R. S. Mulliken, J. Chem. Phys., 7, 339 (1939); (b) R. S. Mulliken, C. A. Rieke and W. G. Brown, This Journal, 63, 41 (1941); see footnote 30 of reference 9 for a correction which affects the quantitative though not the qualitative conclusions of the 1841 paper.
(9) R. S. Mulliken and R. G. Parr, J. Chem. Phys., 19, 1275 (1951), footnote 26.
(10) Cf., e.g., C. A. Coulson, "Valence," Oxford Univ. Press, London, 1952, p. 238.
(11) R. S. Muliiken and C. A. Rieke, This Journal, 63, 1770 (1941); R. S. Mulliken, J. chim. phys., 46, 497 ,(1949), eq. 29, 85.
(12) R, S. Mulliken, C. A. Rieke, D. Orloff and H. Orloff, J. Chem. Phys., 17, 1258 (1949).
(13) (a) R. S. Mulliken, Rev. Mod. Phys., 14, 265 (1942), footnote 14; further, G. W. Wheland, ref. 5 above, who, however, assumed a different parameter γ to be proportional to S (regarding the relation of β to γ, see text and ref. 9 above); (b) R. S. Mulliken, J. chim. phys., 46, 675 (1949), section 28; (c) R. S. Mulliken and C. C. J. Roothaan, Chem. Revs., 41, 219 (1947). Here calculations were made with each of two trial values of $\beta_{12} / \beta_{\mathrm{CC}}$, namely, 2.0 and 1.5 .
(14) Heilbronner and Simonetta (see ref. 6) included the hyperconjugative effect of the methyl group in calculations on methylated azulenium ions. They used $\delta=-0.2$ for the H_{3} quasi-atom, $\delta=0$ for the carbon of the methyl group, and $\delta=-0.1$ for the ring carbon bearing the methyl group. These authors also recognized the need for the inclusion of hyperconjugation with the H_{2} quasi-atom, but they made no calculations of this effect.
(15) For extensive computations by the same method on radicals, see J. S. Roberts and H. A. Skinner, Trans. Faraday Soc., 45, 339 (1948).
more electronegative than the carbon atom $2 \mathrm{p} \pi$ electron. ${ }^{16}$

Pullman and co-workers ${ }^{17}$ have assumed $\delta=$ -0.2 , and $\beta_{\mathrm{CH}}=2 \beta_{\mathrm{CC}}$, for either $\mathrm{C}=\mathrm{H}_{2}$ or $\mathrm{C} \equiv=\mathrm{H}_{3}$ hyperconjugation, and similar parameters have been used by Wheland ${ }^{5}$ for toluene and by others. ${ }^{14,18}$

More recently Coulson and Crawford, ${ }^{19}$ in papers on hyperconjugation especially in methylated benzenes and ethylenes, have cited chemical and dipole moment evidence which makes it fairly certain that δ is negative, and perhaps in the neighborhood of $-0,5$.

Thus empirically, a negative δ seems to be required, but it seemed desirable also to seek a theoretical explanation since, according to theoretical reasoning mentioned above, δ should be positive. The following argument appears to give at least a rough basis for such an explanation. The electronegativities which we wish to compare are those of a carbon $2 \mathrm{p} \pi$ orbital and an H_{2} quasi- π group orbital of the form $1 \mathrm{~s}-1 \mathrm{~s}$. In the theoretical reasoning used earlier, it was assumed that it would be adequate to set the electronegativity of the $1 \mathrm{~s}-1 \mathrm{~s}$ group orbital equal to that of a hydrogen atom. But more recent calculations show that the overlap integral $S_{\text {HH }}$ for the two $1 \mathrm{~s}_{\mathrm{H}}$ orbitals making up $1 \mathrm{~s}-1 \mathrm{~s}$ is about 0.26 (for a normal CH_{2} group with $120^{\circ} \mathrm{H}-\mathrm{C}-\mathrm{H}$ angle), which tends to indicate that these orbitals interact strongly. This interaction would be an antibonding one, which would make the orbital 1 s is less tightly bound than $1 \mathrm{~s}_{\mathrm{H}}$ alone. According to LCAO MO theory, ${ }^{20}$ the binding energy (or ionization potential I) of a $1 \mathrm{~s}-1 \mathrm{~s}$ MO should be given approximately by

$$
-I_{1 \theta-1 \mathrm{a}} \approx-I_{\mathrm{H}}-\beta_{\mathrm{HH}} /\left(1-S_{\mathrm{HH}}\right)
$$

with $-\beta_{\mathrm{HHI}}$ about 2.05 e.v. ${ }^{21}$ Then setting $I_{\mathrm{H}}=$ 13.6 volts, $I_{1 \mathrm{~s}-1 \mathrm{~s}}$ is found to be 10.8 volts, which is slightly smaller than $I_{2 \mathrm{p} \pi}$ (11.2 volts) for the $2 \mathrm{p} \pi \mathrm{AO}$ for carbon ${ }^{16}$ in its proper valence state. Hence if electronegativity is given ${ }^{16}$ by $(I+E) / 2$, and if E in each case is assumed proportional to I (this assumption should probably be satisfactory, especially since both E 's are near zero anyway), the quasi $\pi 1 \mathrm{~s}$ - $1 \mathrm{~s} \mathrm{H}_{2}$ MO should be less electronegative than the $2 \mathrm{p} \pi$ carbon AO , in agreement with the assumption of a negative δ value by Pullman and by Coulson and Crawford. ${ }^{22}$
(16) R. S. Mulliken, J. Chem. Phys., 2, 782 (1934). In that paper the use of $(I+E) / 2$ was proposed as an absolute measure of electronegativity ($I=$ ionization potential, $E=$ electron affinity, for detachment or attachment of an electron in a particular orbital-pure or hybrid as the case may be-the atoms and ions being in appropriate valence states)
(17) B. Pullman, M. Mayot and G. Berthier, ibid., 18, 257 (1950), and references given there.
(18) Longuet-Higgins and Sowden, J. Chem. Soc., 1404 (1952); C. A. Coulson, Proc. Phys. Soc., 45, 933 (1952); H. H. Jaffe, J. Chem. Phys., 20, 778 (1952).
(19) C. A. Coulson and V. A. Crawford, J. Chem. Soc., 2052 (1953); V. A. Crawford, ibid., 2058 (1953); 2061 (1953). It may be noted that these authors have largely overlooked refs. 11 and 13 , which are of some relevance. Also, Coulson and Crawford have followed Mulliken, Rieke and Brown in an error ($c f$. ref. 8b) which may somewhat (althongh not seriously) affect their quantitative conclusions.
(20) R. S. Mulliken, J. chim. phys., 46, 497 (1949), § 6 and 7.
(21) R. S. Mulliken, ibid., 46, 675 (1949), Table XX.
(22) While the reasoning above is qualitatively satisfactory, it is not clear how α values are related quantitatively in general to electronegativities. According to some studies by Mulliken (J. chim. phys., 46, 497 (1949). Tables III, IV, and ibid., 46, 675 (1949), Table XVIII,

As has been mentioned above, the appropriate formulation of the $\mathrm{C}=\mathrm{H}_{2}$ double bond in the discussion of hyperconjugation involves not only a quasi- π bond between a $2 \mathrm{p} \pi_{\mathrm{c}} \mathrm{AO}$ and a $1 \mathrm{~s}-1 \mathrm{~s}_{\mathrm{H}}$ MO, but also a quasi- σ bond. The latter is between a digonal carbon AO 2dic [of form $2^{-1 / 2}(2 \mathrm{sc}+$ $2 \mathrm{p} \sigma \mathrm{c})$] and a $1 \mathrm{~s}+1 \mathrm{~s}$ quasi- $\sigma \mathrm{H}_{2} \mathrm{MO}$. To supplement the foregoing discussion of the relative electronegativities of the $2 \mathrm{p} \pi \mathrm{c}$ and the $1 \mathrm{~s}-1 \mathrm{~s}$ of H_{2}, it seems desirable here to give a corresponding discussion of the relative electronegativities of 2dic and $1 \mathrm{~s}+1 \mathrm{~s}$ of H_{2}.

Proceeding as above, the bonding energy of $1 \mathrm{~s}+$ Is of H_{2} should be given approximately by

$$
-I_{1 \mathrm{s+}+\mathrm{a}} \approx-I_{\mathrm{H}}+\beta_{\mathrm{HH}} /\left(1+S_{\mathrm{EH}}\right)
$$

which with I_{H} and β_{HH} as given above, gives $I_{1 s+1 s}$ as about 15.2 volts. On the other hand, $I_{2 \mathrm{di} \sigma}=1 / 2\left(I_{2 \mathrm{~s}}+I_{2 \mathrm{p} \sigma}\right)$, for the proper valence state of carbon, is about 16.14 volts, ${ }^{16}$ indicating that in the quasi- σ bond as well as in the quasi $-\pi$ bond, H_{2} should be somewhat electropositive to carbon. This would indicate that the H_{2} group as a whole in CH_{2} would be somewhat electropositive to carbon. A preliminary examination indicates that these conclusions would probably not be strongly modified using $(I+E) / 2$ as a measure of electronegativity.
Note added in proof.-In the preceding discussion, it would have been better to have added to each of the equations for $-I_{1 p-1 s}$ and $-I_{1 s+1 s}$, and also to $-I_{2 p \pi}$ for carbon, a term ω which would affect the results very considerably (for bonding MO's at least, ω is usually positive, though sometimes negative: of ref. 20, Tables IV-VI).
4. Energy Levels. -We carried through the present calculations with trial δ values of -0.5 , $-0.25,0,0.25$ and 0.5 . The results are shown in Table IA.

All the b_{1} levels decrease in energy with increasing electronegativity of the hydrogen, while the a_{2} energies are unaffected. That is, increasing δ leads to lower total energy (but smaller resonance energy, see below) and to lowering of the calculated frequency of the longer wave length transition. The position of the second transition is relatively insensitive to changes of δ. Hyperconjugation causes a considerable migration of positive charge to the hydrogen ($c f$. Table IIA), mainly from the 3,5 and 7 carbons; this effect decreases for increasing δ, as one would expect.
5. Charges and Bond Orders.-The charges and bond orders (Table IIA) were computed from the coefficients of the occupied MO's. The relative values of the coefficients in the $j^{\text {th }} \mathrm{MO}$ are found by substituting the corresponding energy into the linear equations; the absolute values may then be found from the normalizing condition on the LCAO wave function, $\sum_{\mathrm{r}, \mathrm{s}} c_{\mathrm{r}} \delta_{\mathrm{sj}} S_{\mathrm{rs}}=1$. Here c_{rj} is the coefficient in the $j^{\text {th }}$ LCAO MO of an AO on atom r. A measure of the fraction of the total electronic
semi-empirical $\alpha^{\prime} s$), $-\alpha$ lies in general between I and $(I+E) / 2$, but usually nearer I. This suggests that isinally α may be roughly proportional to I or to $(I+E) / 2$, which is all that is necessary for our argument. Reasons for preferring a quantity proportional to $(I+E) / 2$ rather than to I as a measure of electronegativity are given in ref. 16 bit when E is small as for both C and H atoms (and probably for $1 \mathrm{~s}-1 \mathrm{~s}$ of H_{2} here), the difference may be innimportant.

Table IA
Summary of Results of Energy Calculations with Various Trial Values of δ, Assuming $\omega=0$ and Uniform α 's and β^{\prime} 's for the Ring Atoms ${ }^{a}$

	$\delta=-0.50$	$\delta=-0.25$	$\delta=0.00$	$\delta=0.25$	$\delta=0.50$
$\int 5 \mathrm{~b}_{1}$	7.4318	7.3580	7.2883	7.2241	7.1638
$4 b_{1}$	2.6294	2.5988	2.5703	2.5440	2.5200
Orbital energies w_{i} for delocalized model, in units $2 \mathrm{a}_{2}$	1.3333	1.3333	1.3333	1.3333	1.3333
of $-\beta$: $\quad\left\{3 \mathrm{~b}_{1}\right.$	0.1356	0.0654	0.0000	-0.0594	-0.1124
$w_{i}=\left(\epsilon_{i}-\alpha\right) /-\beta \quad 1 a_{2}$	-0.8000	-0.8000	-0.8000	-0.8000	-0.8000
$2 \mathrm{~b}_{\text {I }}$	-1.0582	-1.0910	-1.1214	-1.1477	-1.1694
$1 b_{1}$	-1.4552	-1.4973	-1.5539	-1.6275	-1.7187
[E (delocalized model)	-6.6268	-6.7766	-6.9506	-7.1504	-7.3762
Sum (E) of orbital ener- E (semi-localized model)	-6.1940	-6.4284	-6.6629	-6.9286	-7.1940
gies for occupied π-orbi- $\{E$ (localized model)	-5.3766	-5.6110	-5.8455	-6.1112	-6.3766
tals, in units of $-\beta \quad E$ (benzene, deloc. model) ${ }^{\text {d }}$			-5.8667		
(E) benzene, loc. model) ${ }^{\text {d }}$			-4.8000		
Vertical HCJE (hypercon- $E_{\text {semiloc. }}-E_{\text {deioc. }}{ }^{\text {b }}$	0.4328	0.3482	0.2877	0.2218	0.1822
jugation energy) ${ }^{\text {a }}$ kcal./mole ${ }^{\text {e }}$	26.0	20.9	17.3	13.3	10.9
Vertical resonance energy $\left\{E_{\text {loc. }}-E_{\text {deloe. }}{ }^{\text {b }}\right.$	1.2502	1.1656	1.1051	1.0392	0.9996
Vertical resonance energy ${ }^{\text {a }}$ kcal./mole ${ }^{\text {a }}$	75.0	69.9	66.3	62.4	60.0
Vertical resonance energy of benzene for comparison: ${ }^{\text {d }}$			1.0667		
(Delocalized model	26.5	23.4	20.6	18.3	16.5
Compressional energies Semi-localized model	13.1	13.1	13.1	13.1	13.1
Net (delec. - semiloc.)	13.4	10.3	7.5	5.2	3.4
Net HCJE (kcal./mole) ${ }^{\text {c,e }}$	12.6	10.6	9.8	8.1	7.5
Net resonance energy (kcal./mole): $:^{c, f}$	48.5	46.5	45.7	44.1	43.5

${ }^{a} \beta$ is defined in the last paragraph of section $2, \delta$ in the second paragraph of section $3, \omega$ in section 9 . o These energies are in units of $-\beta$. ${ }^{c}$ Figures given in kcal. are computed using $\beta=-60$ kcal. per mole (see last paragraph of section 9). ${ }^{d}$ See last paragraph of section 7. © Net HCJE $=$ vertical HCJE minus net (deloc. - semiloc.) compression energy. f Net resonance energy $=$ vertical resonance energy minus compression energy of delocalized model.

Table IB
Summary of Results of Energy Calculations with α 's and β 's Made Self-consistent for Three Trial Values of

	$\omega=0$	$\omega=2$	= 4
Orbital energies $w_{\text {; }}$ for delocalized model, in units of $-\beta_{0}$:$w_{i}=\left(\epsilon_{i}-\alpha_{0}\right) /-\beta_{0}$	6.619		
	2.546		
	1.369		
	0.000	-0.3708	-0.6750
	-0.813	-1.0937	-1.3765
	-1.116	-1.4005	-1.6877
	-1.520	-1.7791	-2.0616
	-6.898	-8.547	-10.252
	-6.680	-8,202	-9.796
Vertical HCJE $\quad\left\{\begin{array}{c}\left(E \text { semlioo. }-E_{\text {deloe. }}{ }^{\text {a }} \text { a }\right. \\ \mathrm{kcal} . / \mathrm{mole}\end{array}\right.$	0.218	0.345	0.456
	13.1	20.7	27.4
Net compressional energy correction (kcal./mole)(deloc. - semiloc.) ${ }^{b}$ Net HCJE (kcal./mole) ${ }^{\text {b }}$	7.2	7.2	7.2
	5.9	13.5	20.2

${ }^{a}$ Energies are in units of $-\beta_{0}$. ${ }^{b}$ In kilocalories per mole, $-\beta_{0}=60$.
charge which is associated with atom γ would then be $2\left\{\sum_{\mathrm{j}} c_{\mathrm{rj}}{ }^{2}+\sum_{\mathrm{j}} \sum_{\mathrm{s} \neq \mathrm{r}} 1 / 2 c_{\mathrm{rj}} c_{\mathrm{sj}} S_{\mathrm{rs}}\right\}$. The factor 2 occurs because MO is doubly occupied.

A less tedious procedure, which leads here to almost identical results, is to renormalize the coefficients by requiring that $\sum_{\mathrm{r}} c_{\mathrm{rj}}{ }^{2}=1$ and then to use $2 \sum_{j} c_{\mathrm{rj}}{ }^{2}$ as a measure of the negative charge on atom r. The first procedure corresponds to a division of the charge distribution into "atomic" and "overlap" charge, with the overlap charge subsequently divided between the corresponding pairs of atoms.

The second, approximate procedure involves a division of the distribution directly into atomic charges only; this method was used to derive the charges in Table IIA and also in Table IIB. The same coefficients as were used to find the charges were then used to find the bond orders, $p_{\mathrm{rs}}=2 \sum_{\mathrm{j}}$ $c_{\mathrm{rj}} c_{\mathrm{sj} .}{ }^{23}$
6. Conjugation and Hyperconjugation.-In order to obtain resonance and hyperconjugation energies we considered, in addition to our delocalized model, a localized and also a semilocalized one. In the localized model, four π -
(23) Cf. Coulson, reference 10, p. 251.

Table II
Calculated Atomic Charges and π Bond Orders
A. Approxiniate Delocalized Model, assuming $\omega=0$ and uniform α 's and β^{\prime} 's for ring atoins, for several trial valnes of δ (based on calculations for Table IA)

B. Improved Delocalized or Semi-localized Model, for $\delta=0$ but with α 's and β 's made self-colisistent for three trial values of ω (based on calculations for Table IB)

	Atom	$\omega=0$	Delocalized mode $\omega=2$	$1 \quad \omega=4$
	1	0.212	0.172	0.161
Charges ${ }^{\text {a }}$	2	. 004	. 076	. 090
	3 or 7	254	. 184	. 169
	4 or 6	-. 002	. 093	. 117
	5	. 280	. 198	. 175
		Bonds	Delocalized model (Caled. bond approximately for all three	Semi- localized model rders were the same values)
π Bond orders		1-2	0.86	1.00
		$2-3$ or $2-7$. 34	0.00
		$3-4$ or 6-7	75	. 77
		$4-5$ or 5-6	. 60	. 57

${ }^{a}$ In units of +e .
electrons are in two-center orbitals on some four of the five ring atoms, corresponding to the two ordinary double bonds in any one of the three structures

The energy of these four electrons is $4(\alpha+0.800 \beta)$. Further, we must consider the two single $\mathrm{C}-\mathrm{H}$ bonds of the CH_{2} group as replaced by a quasi- σ. and a quasi- π bond, ${ }^{24}$ and include here the energy of the two quasi- π electrons, which is given by twice the lower root of the minor $\left|\begin{array}{ll}d_{11} & d_{12} \\ d_{21} & d_{22}\end{array}\right|$ of $D\left(\mathrm{~b}_{1}\right)$ in eq. 2 , where $d_{11}=x_{1}, d_{12}=\beta_{12}+1 / 2 S_{12}\left(x_{1}+x_{2}\right)$, etc. This quasi- π energy of course depends on the value of δ. The total π-resonance energy is the difference between the π-electron energy of this model and that of the delocalized one. ${ }^{25}$

The semi-localized model is that assumed by Wheland, Dewar and Gold ${ }^{3}$; in their calculations, however, overlap was neglected. Four π-electrons are placed in orbitals spread over five of the carbon atoms; the energies are given by the lower root of $D\left(\mathrm{a}_{2}\right)$ above and the lowest root of the minor $\left|d_{33} d_{34} d_{35}\right|$ $d_{43} d_{44} d_{45}$ of $D\left(b_{1}\right)$. The sixth carbon is consid${ }_{-1} d_{53} d_{54} d_{55}$
(24) Cf. discussion of $\mathrm{H}_{2} \mathrm{O}$ in reference 12.
(25) But see the discussion of R. S. Mulliken and R. G. Parr, J. Chem. Phys., 19, 1271 (1951), section 3.
ered to be part of a normal CH_{2} group, and hors-decombat as far as π interactions are concerned; hence the energy of the electron pair in the two-center quasi- π orbital, which must also be included, is the same as that in the localized model. We evaluated these energies, including overlap between neighboring atoms in the computations. The energy difference between the semilocalized and the delocalized models is the vertical hyperconjugation energy (HCJE). ${ }^{26}$ The energy remaining after correcting for compressional energy changes (see below) we call the net HCJE.

It is not strictly accurate to compare the resonance energies of the different models without making allowance for the fact that a somewhat different value of β should be used for each one. Nevertheless, an average value of about -60 kcal . for β (see section 9 below) may be used without very serious error, and the vertical HCJE is then found to be 11 kcal . for $\delta=0.5$, or 26 kcal . for $\delta=-0.5$.
7. Compressional Energies (CE).-To estimate the net HCJE it is of course necessary to include an energy correction for bond stretching and compression in passing from one model to another. ${ }^{27}$ We estimated this using very rough formulas derived on the assumption that the bonds are distorted harmonically. For the $\mathrm{C}=\mathrm{H}_{2}$ bond further assumptions are needed; our procedure was as follows. If the quasi- π bond order is found to be z,

[^0]the total bond order will be $1+z$, assuming a single quasi- σ bond. We then considered the $\mathrm{C}=\mathrm{H}_{2}$ link, for the purpose of finding the CE, to consist of two single $\mathrm{C}-\mathrm{H}$ bonds each of order $1 / 2(1+z)$, and assumed further that the $\mathrm{C}-\mathrm{H}$ distance could then be computed by taking the bond distance-bond order variation to be similar to that of a $\mathrm{C}-\mathrm{C}$ single bond. The $\mathrm{C}=\mathrm{H}_{2}$ contribution to the total CE is small enough so that the errors in this procedure should be unimportant.

Using an observed bond distance-bond order relation ${ }^{28}$ and force constants ${ }^{29}$ of 4.50×10^{5} dyne/ cm . for $\mathrm{C}-\mathrm{C}, 9.57 \times 10^{5}$ dyne $/ \mathrm{cm}$. for $\mathrm{C}=\mathrm{C}$, and 4.80×10^{5} dyne $/ \mathrm{cm}$. for $\mathrm{C}-\mathrm{H}$, we obtained the formulas for estimating the CE corrections

$$
\left.\begin{array}{l}
\mathrm{C}-\mathrm{C}: \mathrm{CE}=324\left(0.29-0.33 p+0.04 p^{2}\right)^{2}{ }^{2} \mathrm{kcal} . / \text { mole } ; \\
\mathrm{C}=\mathrm{C}: \mathrm{CE}=689\left(0.50-0.33 p+0.04 p^{2}\right)^{2} \text { kcal./mole } ; \tag{3}\\
\mathrm{C}=\mathrm{H}_{2}: \mathrm{CE}=110(1-1 / 2 p)^{2} \text { kcal. } \mathrm{k} \text { mole }
\end{array}\right\}
$$

where p is the total bond order.
Much of the error entailed by the use of these crude formulas can be expected to cancel in comparing the CE's of the semi-localized and delocalized models. The net HCJE (Table IA) is 12.6 kcal . for $\delta=-0.5$ and 7.5 kcal . for $\delta=0.5$; these values are somewhat smaller than those given in our original Letter, ${ }^{1}$ since at the time we underestimated the importance of the CE corrections. Still, either value is larger than most non-aromatic conjugation energies. The first value is very probably the better (see fourth paragraph of section 3 above).

We have included in Table IA a delocalized energy of benzene, and a localized energy corresponding to the energy of a single Kekule form. These values, computed with $S=0.25$ and $\delta=0$, may be compared with the corresponding quantities calculated for the benzenium ion. The net conjugation energy of benzene, 39.4 kcal ., is less than the over-all net resonance energy found for the benzenium ion with any of our trial values of δ.

Improved Calculations

8. Adjustment of the β 's to Self-consistency.As a first improvement in the approximation, we included a variation of β with interatomic distance, with the latter again inferred from the bond orders using the above-mentioned empirical relation. ${ }^{28}$ The (Slater) overlap integrals at various distances are known, ${ }^{30}$ and may be related to the bond orders by the approximate formula

$$
\begin{equation*}
S(p)=0.080 p+0.115 \tag{4}
\end{equation*}
$$

Assuming β proportional to $\mathrm{S},{ }^{13}$ we now write

$$
\begin{equation*}
\beta(p)=\beta_{0} S(p) / 0.25 \tag{5}
\end{equation*}
$$

β_{0} being the β-value appropriate to the interatomic distance $1.39 \AA$., where the overlap is 0.25 . For the carbon-hydrogen quasi- π bond, we retained the assumption that $S_{12}=0.512$ and $\beta_{12}=2 \beta_{0}$ for both semi-localized and the delocalized model. A probably minor modification that should have been included would have been to use the same empirical distance-bond order relation as was used for finding
(28) For example, C. A. Coulson, Proc. Roy. Soc. (London), 169A, 413 (1939).
(29) G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules,' New York, N. Y., 1945, p. 193.
(30) R. S. Mulliken, et al., reference 9, Table III.
the CE's, evaluate the new S taking account both of the $\mathrm{C}-\mathrm{H}$ distances and of the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle (which in turn should depend somewhat on the bond order), and then take β proportional to S.

The procedure used was to begin with a set of β values corresponding to an assumed set of bond orders and to calculate new bond orders, repeating the process to self-consistency, for both the semi-localized and the delocalized model, each separately. This was done only with $\delta=0$; the results are summarized in the $\omega=0$ columns of Tables IB and IIB.

The effect of this adjustment of the β 's is a rather large decrease in the HCJE, as may be seen by comparing the first column of Table IB with the central column of Table IA. The figures in Tab'e IA corresponding to $\delta \neq 0$ should undergo a similar change if the β 's there were likewise made self-consistent.
9. Adjustment of the α 's.-According to Table IIA the carbon atoms in the ring differ considerably in charge. Theoretically, the integral represented by α should depend linearly on the valence-state ionization potential. ${ }^{31}$ It therefore cannot be independent of charge, so that the initial assumption that the α 's of all the carbon atoms are equal is inconsistent with the non-uniform charge distribution found. In order to work toward self-consistency, we decided to assume that the α 's depend linearly on the charges, so that the α of the rth atom, with charge q_{r}, becomes $\alpha_{0}+\omega \beta q_{\mathrm{r}} .^{32}$ We may set an approximate upper limit to ω as follows: if $\alpha=$ $1 / 2(I+E),{ }^{17,22}$ the difference between the α values for the neutral atom and the positive ion ($q_{r}=1$) should be approximately equal to the difference between the first and the second ionization potentials of carbon, which is about 12 e.v. If $\beta=-2.6$ e.v. (see below), this requires $\omega=4.6$. As a result of polarization of the σ orbitals, the q 's calculated from the π electrons alone will certainly exceed the "real" q 's; use of a smaller value for ω should compensate this. We adjusted the α 's (and the β 's simultaneously) to self-consistency for the two trial ω values 2 and 4 , with $\delta=0$ and with the α of the H_{2} pseudo-atom, as a function of its charge, treated like those of the carbons. This was done for both the semi-localized and the delocalized model, each separately. The results are shown in the second and third columns of Table IB and in Table IIB. The orbital energy decreases with increasing ω for both the semi-localized and the delocalized model, but more so for the latter; this differential effect represents a strong increase in the HCJE.

The foregoing adjustment of the α 's (and β 's) leads to an increase in the HCJE which for a reasonable value of ω more than compensates for the decrease resulting when the β 's alone are changed. (Calculations now in progress involving hyperconjugation stabilization of simple alkyl radicals and their ions indicate that a value of ω near 1.4 gives the best agreement with experiment.) The bond orders (Table IIB) are only very slightly affected
(31) R. S. Mulliken, J. chim. phys., 46, 497 (1949), especially equations 38 and 42.
(32) G. W. Wheland and D. E. Mann, J. Chem. Phys., 17, 264 (1949), made a similar adjustment, but assumed the special value $\omega=1$.
by the inclusion of ω. The charge variation from atom to atom is considerably smoothed out (Table II).

Including the α adiustment for the cases with $\delta \neq$ 0 of Table IA should alter the results in much the same way as for those with $\delta=0$.

The energies in Table IB are in units of β_{0} except where kcal. are indicated. The conversion to kcal. or e.v. was made using a spectroscopic value of -2.6 e.v. or -60 kcal ., for $\beta_{0} .{ }^{33}$ The calculations of reference 33 are based on assumptions similar to those used here, that is, including S for nearest neighbors but neglecting non-neighbor interactions.

Survey and Discussion of Results

10. The Spectrum. - The two lowest predicted excited states of the benzenium ion result if an electron is transferred from either the $1 a_{2}$ or the $2 \mathrm{~b}_{1}$ level to the $3 \mathrm{~b}_{1}$ level (see Tables I and III). For the former, the polarization will be parallel to the symmetry axis, and for the latter perpendicular to it and in the plane of the molecule. The calculated excitation energies lead to wave lengths near $6000 \AA$. and $4300 \AA$., respectively, the precise values depending rather more on the choice of values of δ or ω than on the use of the semi-localized versus the delocalized model (see Table IIIB); in other words, they are not greatly affected by hyperconjugation. These wave lengths correspond to the mean of the singlet and triplet excited state in each transition, so that the predicted frequencies are subject to the additional uncertainty resulting from the singlet-triplet separation. If one assumes the latter to amount to 2.0 e.v. in both cases, the predicted wave lengtlis for transition to the singlet states become 4000 and $3200 \AA$., respectively.

Table III
Frequencies of Calculated Spectral Transitions (in Vitts of - $\beta=60 \mathrm{Kcat} /$.Mole)
A. Approximate Delocalized Model, assuming $\omega=0$ and uniform α 's and β 's for ring atoms, for several trial values of δ. (From results at top of Table IA)

$$
\begin{array}{lccccc}
\text { Transition } & -0= & \delta= & -0.25 & \delta=0.00 & \delta=0.25 \\
\delta=0.50 \\
3 \mathrm{~b}_{1}-1 \mathrm{a}_{4} & 0.9356 & 0.8654 & 0.8000 & 0.7406 & 0.6876 \\
3 \mathrm{~b}_{1}-2 \mathrm{~b}_{1} & 1.1938 & 1.156 \mathrm{f} & 1.1214 & 1.0883 & 1.0570
\end{array}
$$

B. Improved Delocalized and Semi-localized Models, for δ $=0$ but with α 's and β 's made self-consistent for thrce trial valnes of ω. (Basect on calculations for Table IB)

	Transimin	$\omega=0$	$\omega=2$	$\omega=4$
Delocalized motel	$3 b_{1}-1 a_{4}$	0.813	0.723	0.702
	$2 b_{1}-2 b_{1}$	1.116	1.030	1.013
Semi-localizerl moslel	$3 b_{1}-1 a_{1}$	0.821	0.691	0.655
	$3 b_{1}-2 b_{1}$	1.196	1.084	1.059

The intensities of the two transitions may be estimated from the same coefficients as were used to compute the charges and bond orders. Following Mulliken and Rieke, ${ }^{34}$ we use as a measure of the intensity the dipole strength D defined by

$$
D=Q^{2} ; \vec{Q}=\int \psi ; \sum_{\text {electrons }} \overrightarrow{\gamma_{e}} \overrightarrow{\psi_{j}} \mathrm{~d} \tau \cong \sqrt{2} \sum_{\mathrm{m}} c_{\mathrm{m}} ; c_{m} \overrightarrow{\gamma_{m}}
$$

(23) R. S. M11liken and C. C. J. Re, ithana, J. Chem, Phys, 16, 118 (1948).
(3.t) R. S. Mulliken and C. A. Rieke, Repord on Progress in Physics, 8, 231 (1941) , pp. 232,256 , especially eq. 35. 141 ect. 3i a factar $\sqrt{2}$

for the transition from electronic state ψ_{i} to ψ_{j}, where $\overrightarrow{r_{\mathrm{m}}}$ is the position vector of the $\mathrm{m}^{\text {th }}$ atom in some convenient reference system and the c 's are LCAO coefficient derived with the normalizing relation $\sum_{\mathrm{m}} c_{\mathrm{mi}}{ }^{2}=1$.

Using the coefficients for $\delta=0$ and the simplest approximation, we find that for the $a_{2} \rightarrow b_{1}$ transition the predicted dipole strength is about 0.72 , while for the $b_{1} \rightarrow b_{1}$ transition it is about 1.48 , in units of $10^{-16} \mathrm{~cm} .^{2}$. The corresponding oscillator strengths or f values, given by eq. 2 of reference 34 as $f=1.085 \times 10^{11} \nu \mathrm{D}$. (cm. ${ }^{2}$), are 0.2 and 0.5 , if the transitions are assumed to be at 4000 and 3200 A., respectively. However, according to section $7(\mathrm{~g})$ of reference $3 t_{1}$ the observed f 's may be expected to be considerably smaller than (perhaps about 0.3 as large as) the calculated values.
Recently C. Reid, ${ }^{35}$ has studied the absorption spectra of benzenium, toluenium and other aromatic carbonium ions. For the benzenium and toluenium ions he observed the first absorption transition at about $4200 \AA$., followed by a second stronger one with maximum (not reached) somewhat below 3000 \AA., and with respective f values of roughly 0.1 .5 and perhaps 0.4 . The agreement with the predictions made above is fairly satisfactory, considering the uncertainties in the latter.
11. Charges and π Bond Orders.-Figure ? shows the computed charges and π bond orders corresponding to some of the various approximations or assumptions used above (see Table II for further values).

$\omega=0$

Sinplest Calculations:

$\delta=0$
$\omega=0$
Semilocalized Morlel
(no hyperconjugation)
Self-Consistent Calculatiturs
Fig. 2.--Charges and π bourl orclers.

[^1]It is seen that the calculated π bond orders of the $2-3$ and $2-7$ bonds (see Fig. 1 for numbering) are greatly increased by the inclusion of hyperconjugation, in part at the expense of that of the $\mathrm{C}=\mathrm{H}_{2}$ bond. It is also seen that hyperconjugation permits a considerable migration of negative charge from the H_{2} into the ring (even for $\delta=0$).

The charge distributions in Fig. 2 have, for the case $\delta=0, \omega=0$, an interesting relation to some considerations of Longuet-Higgins ${ }^{36}$ on zero-energy orbitals in alternant hydrocarbon radicals. The ion $\mathrm{C}_{6} \mathrm{H}_{7}+$ is the cation of the cyclohexadienyl free radical $\square<\left(\mathrm{C}_{6} \mathrm{H}_{7}\right)$. This radical may be said to be hyperisoaromatic with the benzyl radical $-\mathrm{CH}_{2}$, which is an alternant hydrocarbon. That is to say, it has the same number of π electrons, arranged geometrically in the same way, as the benzyl radical, provided we count the quasi- π electron of the H_{2} group in cyclohexadienyl as equivalent to the π electron on the carbon atom of the methylene group of the benzyl radical. As a consequence, provided $\delta=0$ and $\omega=0$, LonguetHiggins' considerations should be applicable to the cyclohexadienyl radical and its cation. Accordingly, the last electron in the radical should be in a zeroenergy orbital, with its LCAO coefficients zero on atoms 2,4 and 6 , and given by

$$
\begin{equation*}
\sum_{n} \beta_{\mathrm{na}} C_{\mathrm{s}}=0 \tag{6}
\end{equation*}
$$

on atoms $1,3,5$ and 7 ($c_{s}=$ LCAO coefficient, $s=$ $1,3,5$, or $7 ; \beta_{\text {ns }}=$ resonance integral (see section 2) between s and any of its next-neighbors n). In agreement with these considerations, $c_{2}=c_{4}=$ $c_{8}=0$ is found according to our calculation for $\delta=$ $0, \omega=0$, independently of the values of the β 's.

If all the $\beta_{c c}$'s are assumed equal and β_{12} is $2 \beta_{c c}$ (cf. Section 3), eq. 6 leads to $c_{1}=c_{3}=c_{5}=c_{7}=$ 0.50 . Now if the zero-energy electron is removed from the radical to form $\mathrm{C}_{6} \mathrm{H}_{7}{ }^{+}$, the resulting positive charge should be $c_{\mathrm{s}}{ }^{2}$ on each atom, that is, zero on atoms $2,4,6$, and 0.25 on atoms $1,3,5$, and 7 . As can be seen from Fig. 2 or Table II for the case $\delta=0, \omega=0$, with all β_{ce} 's taken equal ("simplest calculations'), this is in almost exact agreement with the results of our calculations. (The slight discrepancies may probably be attributed to the fact that we did not assume S_{12} / S_{cc} exactly equal to $\beta_{12} /$ β_{cc}; Longuet-Higgins assumed all β^{\prime} s proportional to the corresponding S 's.) It will also be noted that the orbital energy of the $3 \mathrm{~b}_{1} \mathrm{MO}$ in Tables IA and IB (the $3 \mathrm{~b}_{1}$ in $\mathrm{C}_{6} \mathrm{H}_{7}+$ is the lowest unoccupied MO, which would be occupied by the odd electron in $\mathrm{C}_{6} \mathrm{H}_{7}$), is precisely zero for $\delta=0, \omega=0$, in agreement with the considerations of Longuet-Higgins.
12. Hyperconjugation Energy.-The best value of the net HCJE within the scheme adopted here would correspond probably to $\omega \cong 1.4$ and $\delta=$ -0.5 and would be about 14.5 kcal . This would probably be somewhat increased by the use of self-consistent-field rather than Slater S values, since with the assumption that β is proportional to S, the SCF S^{\prime} 's lead to a smaller value for β_{12} / β_{0}, which is
(36) H. C. Longuet-Higgins, J. Chem. Phys., 18, 275 (1950), in particular the equation $\sum_{s \neq \Gamma} \beta_{\mathrm{rs}} \mathrm{c}_{\mathrm{g}}{ }^{\circ}=0$ and related discussion.
more favorable for hyperconjugation ($c f$. Section 3). In any event, the predicted hyperconjugation energy of the benzenium ion is of the same order of magnitude as usual resonance energies, and should approximately restore the ring conjugation energy which in the previous calculations ${ }^{5}$ seemed to have been largely lost.

We wish to draw attention to the fact that the present calculations lead to this extraordinarily large HCJE even though the parameters are given about the same values as those used in previous computations for other molecules ${ }^{\text {sb,13a, } 18}$ where HCJE's an order of magnitude smaller were found.

Large HCJE's are also found in observations ${ }^{37}$ and calculations in progress on alkyl radicals and especially their ions. Large computed HCJE's have also been found ${ }^{13 c}$ for twisted ethylene, a neutral molecule with two three-center hyperconjugated systems in mutually perpendicular planes. In both these cases parameter values similar to those of the present paper were used. ${ }^{38}$

Observations such as those of reference 36a provide an experimental test of the methods used in the present paper. Such a check is unfortunately not available for the benzenium ion itself, since it would be necessary to predict the equilibrium constant for the reaction $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{H}^{+} \rightleftarrows \mathrm{C}_{6} \mathrm{H}_{7}{ }^{+}$, and such a prediction would be subject to a large uncertainty arising from the lack of a reliable method of estimating the solvation energies involved.
13. Charge Transfer and Hyperconjugation.Comparison of the calculated HCJE's in Table IA for different δ values, and of those in Table IB for different ω values, shows that while the HCJE for $\mathrm{C}_{6} \mathrm{H}_{7}+$ is relatively large in any case, it is much increased when hyperconjugation is accompanied by the partial equalizations of charge distribution which occur if $\delta<0$ (as it is believed to be) and when allowance is made for the fact that $\omega>0$. One might claim that all the stabilization resulting from charge redistribution should be attributed to an "inductive" (better, a "charge transfer") effect. This, however, is not justified. Without hyperconjugation (that is, if the CH_{2} group remained insulated from the π electrons of the remaining ring atoms), there would indeed be a considerable amount of inductive stabilization among the ring atoms; but there is additional stabilization, here called HCJE (namely, the energy difference between the semi-localized and delocalized models in Tables IA and IB) when this insulation is removed; and this additional stabilization is greater for $\delta<0$ and/or $\omega>0$ than if $\delta=\omega=0$ is assumed. It can of course still be argued that the excess of HCJE which appears for $\delta<0$ or $\omega>0$ is not pure HCJE, but belongs to a joint inductive-hyperconjugative (or charge transfer-hyperconjugative) effect; but by the same argument, this excess can also at any rate not be considered as pure inductive or charge-transfer energy. The argument reduces
(37) (a) Cf. Franklin and Lumpkin, J. Chem. Phys., 20, 745 (1952); Halpern, ibid., 20, 744 (1952); (b) cf. also calculations by J. S. Roberts and H. A. Skinner, Trans. Faraday Soc., 45, 339 (1949).
(38) It may be noted that all these cases where large HCJE's have been found are associated with odd numbers of centers bearing π or quasi- π electrons, whereas the more familiar cases with HCJE's an order of magntiude smaller are associated with even numbers of centers.
to a matter of definitions. We believe that it is appropriate and convenient to define, as we have done, the whole of the increased energy stabilization which results when hyperconjugation is taken into account as HCJE. (Similar problems of definition arise in some cases for ordinary conjugation or resonance, especially frequently where ions are concerned.)

Large shifts in ultraviolet N, V spectra on methylation are known, even for simple neutral molecules of the alternant hydrocarbon type, such as ethylene, butadiene and benzene, which can be accounted for by hyperconjugation ${ }^{13 a, 18}$ using parameter values similar to those of the present paper. For the same molecules, methylation causes
changes (decreases) of still larger magnitude in ionization potential. A fraction of the observed decrease can be accounted for ${ }^{13 a}$ by hyperconjugation in the ion without charge transfer (i.e., assuming $\delta=0, \omega=0$). In view of the great increase in computed HCJE found in the present paper in the case of $\mathrm{C}_{6} \mathrm{H}_{7}+$ when allowance is made for charge transfer, it seems likely that the remainder of the observed decreases in ionization potential on methylation could be accounted for in terms of hyperconjugation with charge transfer, using selfconsistency procedures as in the present paper. Such computations, however, have not yet been made.
Lafayette, Indiana

[Coitribution from the Department of Chemistry, University of Pennsylvania]

Sorption of Acetylene by Silver Nitrate

By F. W. Kirsch and K. A. Krieger
Received April 19, 1954

Abstract

Silver nitrate catalysts important in the low temperature oxidation of acetylene have been studied as they function in oxidation and in the chemisorption stage which is an essential precursor to oxidation. Primary emphasis was given to phenomena occurring below 130°, which is the maximum temperature at which sorption is not complicated by oxidaton. Measurement of sorption rates revealed an inverse relation between rate and acetylene pressure. This observation has been interpreted as an "autopoisoning" effect, which produces a layer of acetylene polymer resistant to penetration. Sorption rate can be correlated with the amount of free acetylene and of available surface, but regularly occurring discontinuities strongly suggest critical changes in the sorbent during sorption. Oxidation, with products identified as carbon dioxide, water, nitric oxide, nitrogen and possibly silver, proceeds at temperatures above 149° after a critical amount of acetylene sorption.

Introduction

A study of the low temperature oxidation of acetylene as catalyzed by silver nitrate supported on alumina revealed some steps in the process worthy of separate and more detailed research. ${ }^{1}$ Foremost among these phenomena is the removal of acetylene from acetylene-air mixtures in a continuous process without a concomitant evolution of carbon dioxide in the product stream. This occurrence prompted efforts to clarify further the reaction mechanism with particular emphasis on the sorption step believed to be a prerequisite for oxidation.

In this study the sorption of acetylene on pure silver nitrate at temperatures between 96 and 170° was investigated in a closed system without gaseous oxygen. Preliminary tests having shown acetylene sorption by alumina to be immeasurably slow below 200°, the method of this research offered a somewhat simplified scheme for elucidating the sorption mechanism. Rates of sorption were measured in the lower temperature range; and, although oxidation complicates the picture somewhat at higher temperatures, it was found possible to elicit additional information on the sorption process.

Experimental

A. Materials.-The silver nitrate was prepared from C.P. grade salt by grinding and sizing through 200 -mesh silk screens. At all times the sorbent was protected as much as possible from air and light before use.

Acetylene from commercial cylinders was passed suc-

[^2]cessively through aqueous solutions of sodiun bisnlifite and sodium hydroxide and then dried before use.
B. Analyses.-Gas analyses were carried out with samples between 0.02 and 0.2 cc . (STP) by absorption in ammoniacal cuprous sulfate solution and measurement of acetylene by a colorimetric method. ${ }^{2}$ For larger samples from experiments involving oxidation, $\mathrm{CO}_{2}, \mathrm{NO}, \mathrm{C}_{2} \mathrm{H}_{2}$ and CO were determined by differential absorption in standard reagents.
C. Apparatus and Procedure.-The apparatus used in this study was a constant volume, static system in which the sorption rates were quantitatively cletermined by following the decrease in gas pressure as a function of time.

Essentially the sorption system consisted of a furnaceenclosed Pyrex cylinder, to which a Zimmerli gage was attached. Pressures were read from the gage with a cathetometer. The sorption system proper, the product removal line, and the gas storage section were evacuated prior to sorption by an oil pump and a single-stage mercury diffusion punp, which produced a residual pressure of 4 to 9×10^{-6} mm .
Between the gas-storage section and the sorption systeln, a doser-bulb contained the acetylene before it was admitted for sorption.
Constant furnace temperatures were maintained by a Thyratron regulator within about $\pm 0.25^{\circ}$, and sorption temperaturcs were deterninled by a Chromel-Aluniel couple inserted in a thermowell extencling from the outer end to the center of the sorption tube.
A sampling line, separated from the sorption section by a stopcock, contained a manually operated Töpler pump to assist in the removal of residual gas after completion of the process.
D. Reversibility of Sorption and Attainment of Equilib-rium.-When excess acetylene was admitted to samples of silver nitrate which had been thoroughly out-gassed at pressures of the order of $9 \times 10^{-6} \mathrm{~mm}$., a rapid decrease in pressure occurred. Additional quantities of acetylene admitted subsequently experienced no decrease in pressure

[^3]
[^0]: (26) Our vertical resonance energy is what Coulson and Altmann, Trans. Faraday Soc., 48, 293 (1952), have called a quantum-mechanical resonance energy.
 (27) Cf. reference 26 above for review, discussion and references.

[^1]: (3:) C. Keid, This Journar, 76, 32f,4 (19.5).

[^2]: (1) W. T. M. Johnson and K. A. Krieger, This Journal, 76, 4782 (1954).

[^3]: (2) T. A. Geissman, S. Kaufman and D. Y. Dollman, Anal. Chem., 19, 919 (1947).

